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equatorial plane at the central spot. In this case the
method is further limited to class I crystals. For such
preliminary adjustments either Laue or symmetrical
oscillation photographs can be used.

(c) Lonsdale (1947) has suggested the use of a flat
film perpendicular to the rotation axis for determining
small are corrections from a Laue photograph when a
symmetry axis is being adjusted parallel to the rotation
axis. The same method of calculation can be used,
taking reflexions related by a diad axis of symmetry
instead of by a plane. The main difficulties lie in deter-
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mining the point where the rotation axis cuts the film,
and the crystal-film distance. A trial-and-error
process may have to be resorted to, using estimated
instead of calculated adjustments.
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Crystal Symmetry and Physical Properties: Application of Grbup Theory
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The paper gives a brief account of group-theoretical methods of studying the effect of symmetry on
all possible physical properties (known and already measured or not known) which depend on
crystal symmetry; based on the fact that all such properties represent the relation between two
quantities each of which may be a scalar, a vector, or a tensor. Tables are given showing the
character of the transformation matrices for each possible combination of the above quantities, the
number of independent constants needed to describe the corresponding phenomenon in each of the
32 classes, and actual examples (where known) of physical properties corresponding to the different
possible combinations. The 32 crystal classes are reduced to 11 in all cases where centro-symmetrical
properties are dealt with. When comparison is made with results of other methods of considering the
same problems, discrepancies are found in the case of the photo-elastic coefficients and the third-
order elastic coefficients.

All the properties considered above are such as will remain invariant under a transformation of
axes according to any symmetry operation. There are other properties, such as enantiomorphism
and optical activity, which change sign for an operation of rotation reflexion. The numbers of

independent constants in each of the 32 classes are deduced for these properties also.

.

1. Introduction

Physical properties of substances generally express the
relation between two quantities. These may be scalars,
vectors, second- or higher-order tensors, all differing
from one another by their transformation properties.
Voigt made the transformation properties of the
quantities involved in a physical relation the basis for
the classification of crystal properties, thus distinguish-
ing scalar—scalar relations (density), scalar-vector re-
lations (pyro-electricity), vector—vector relations (di-
electric polarization), tensor-tensor relations (elas-
ticity), and so on. Each of these relations requires a
number of independent coefficients connecting the
components of the quantities involved, and, without
assuming any symmetry of the crystal, the number of
independent coefficients in the case of linear relations
is the product of the numbers of independent com-
ponents of the quantities being related. In crystals with
symmetry elements, this maximum number of coeffi-
cients will be reduced. In order to find the reduction,
produced by a symmetry element, Voigt transforms the

axes of reference according to the symmetry element
and demands that this transformation have no in-
fluence on the values of the coefficients expressing the
relation of the physical quantities. It follows by this
direct method of transformation that a number of
coefficients must be zero, while others are equal. The
systems of non-vanishing as well as of independent
constants for various properties were thus derived in
considerable detail by Voigt (1910) and by Pockels
(1906). Love (1928), Wooster (1938), Cady (1946),
Mason (1947) and others have subsequently dealt with
the subject.

The fact that the symmetry operations of a crystal
form a group allows the application of group theory to
the study of the effect of symmetry on the physical
properties of crystals. This very powerful method can
be used as a valuable check on the direct process of
deriving the non-vanishing constants in each of the
32 crystal classes. Thus Jahn (1937) made use of group
theory for deducing the number of independent para-
meters and the non-vanishing elastic constants of
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crystals. One of us (Bhagavantam, 1942) gave a some-
what different method by which group theory can be
used for deriving the numbers of independent constants
in the 32 crystal classes for any property. This method
was applied to the cases of optical, elastic and photo-
elastic properties. Discrepancies were found in respect
of photo-elasticity for certain crystal classes between
the results thus obtained and those given earlier by
Pockels. The method has since been extended to other
physical properties in subsequent papers (Saksena,
1944; Suryanarayana, 1945, 1946; Bhagavantam &
Suryanarayana, 1947). It is now proposed to give a
connected account and to apply it in a general manner
to all the possible physical properties, already measured
or otherwise, which depend on crystallographic
symmetry.
2. Description of the method
Consider the transformation properties under any
symmetry operation of a scalar, a vector, a second-order
symmetric tensor and a second-order unsymmetric
tensor. A scalar remains uncHanged, the components
of a vector transform as the Cartesian co-ordinates, the
components of a symmetric tensor as the products of
Cartesian co-ordinates with some additional condi-
_tions, the components of an unsymmetric tensor as
simple products of Cartesian co-ordinates. Thus, under
an operation E; consisting of a rotation about the
2z axis through ¢ or a rotation reflexion through ¢, the
components of a vector, a symmetric tensor and an un-
symmetric tensor transform according to the equations
(1), (2) and (3) respectively. The upper and lower sign,
where an alternative occurs, refer respectively to a
pure rotation and a rotation reflexion.

Ba~>ps 056 4,50, } "
Py —PeSing+p, c0s$, P> s

gy > Oy COSZ P + 01, 8IN2 G + 201, 8IN P COS P,

Cyy —> Oy SIN% P + a1, cOS% P — 200, SIN G COS P,

azz —-> azz)

Oy —> £ 0y, COSP F 0t SN, r(2)

Q> t oy, sing +a,,cosg, ,
Ay —> — Ly Sing cosd +a,, sing cosd
+0tyy(cos? P —sin®@); )
Bz Bux cOs* P+ f,, sin?d + (Bay+ Byg) sing cos @, ]
Byy—> BonSEP + B, 052 — (B, + Bz) sind cosg,
B> Bes
ﬂﬂz_) ;ﬂmsm¢ iﬂ'yz COS¢,
Boy> F Prasing £ B, cos g,
Boo—> £ frzcosd + B, sing,
B~ + fu, 0080 + B, sing,
ﬂ:w'_> _ﬂa:z Sin¢:cos¢ +18y1/ Sin¢ OOS¢
+ Bay €08 G — B, 5IN% P,
Byz—> —Brzsing cosd+ B, sing cos ¢
: '_ﬁ:w sin? ¢ +ﬂw: cos? ¢

These transformations may be regarded as linear sub-
stitutions. The characters of the three trahsformation
matrices are easily seen to be respectively

(2cosg+1), (4cos?p+2cose)
(4cos?¢p+4cosgp+1).

Similarly, the transformation matrix and the respective
character for a tensor of a higher order representing any
given physical property can be deduced. It will be
noted that the character for an unsymmetric tensor
having nine components is the square of the character
for the vector of three components. Similarly, the
character for a third-order tensor (piezo-electric con-
stants giving the relation between a vector and a
symmetric tensor) is the product of the characters
appropriate to a vector and a symmetric tensor, and so
on. When special relations exist between the various
components, the character has, however, to be de-
duced by writing down the full transformation matrix
itself. For example, the elastic coefficients show how a
stress tensor (second-order symmetric) gives rise to a
strain tensor (second-order symmetric), but the maxi-
mum number of such coefficients is only 21, and not 36,
because of the special relations* c¢;,=cg;, and the
character in such a case has to be evaluated inde-
pendently. Similar considerations apply to the higher-
order elastic coefficients which reduce to 56 from being
126. These characters are given in column 3 of Table 1.

Considering, for example, the above symmetric
tensor of six components, the linear substitutions (2)
constitute a reducible representation of the group & of
symmetry operations of any crystal class. Six mutually
orthogonal and independent linear combinations of the
above components may be found in such a way that they
fall into six or less number of sets, the members in each
set transforming among themselves by every operation
of the group G. These will constitute the basis for a new
and completely reducible representation of the group 6.
The character appropriate to any element R in this
representation will be the same as that obtained before,
since the two are equivalent. It is now easy to find =;,
the number of times a particular irreducible representa-
tion repeats itself, in the representation consisting of
the new variables with the help of the general formula

1 p
ni=N§thi(R)Xi(R)' (4)

N is the total number of elements of the group @, and
h; is the number of elements in the jth class. xj(R) is

and

~ the character of the appropriate transformation matrix

relative to the operation R, as given in Table 1, and
¥:(R) is the character relative to the operation R in the
particular irreducible representation.t

By the application of Voigt’s condition, we demand
that in the case of any specified physical property

* Voigt’s notation is used: 4 and % run from 1 to 6.

1 For a derivation of this formula and a fuller explanation
of the symbols, reference may be made to Bhagavantam and
Venkatarayudu (1948).
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represented by such a tensor (row 3a of Table 1) only
those combinations of parameters in respect of any
particular crystal can survive which have the entire
symmetry of the crystal. Thus we want to know the
number of combinations that remain invariant for all
operations R of the crystallographic group @. This
means that we need only find the value of n; appro-
priate to the total symmetric irreducible representation.
Thisis charactenzed by the fact that x;(R) =1 for all R.
In this case x;(R) has already been shown to be equal to
(4cos?¢ £ 2 cosg).

Similar arguments hold for the various coefficients

describing other phenomena. In each case, the number
n; represents the number of independent constants
needed to describe the phenomenon in the particular
crystal class.

3. Results

Table 1 gives the physical properties arranged syste-
matically in order of increasing complexity and is self-
explanatory. Rows 1 to 10 refer to first-order pheno-
mena, whereas rows 11, 12 and 13 are representative of
higher-order phenomena. The list of physical properties
in any row is only representative and is not claimed
to be complete. Where no representative physical
property is known to exist, a line is drawn.

In Table 2 are given the 32 crystal classes or point
groups with their well-known symbols. Symbols repre-
senting the symmetry elements under each crystal
class have the usual significance. The numbers of inde-
pendent constants for each of the properties of Table 1
needed by the 32 classes, as derived from formula (4),
are given in Table 2. The elements of symmetry given in
column 5 for each of the point groups are divided into
conjugate classes of the group. In the sub-columns

- headed by 8 and 12 are given the photo-elastic coeffi-
cients and the third-order elastic coefficients, in which
discrepancies were noticed and pointed out first by the
application of this method. The division of the 32
crystal classes into 11 Obergruppen in all cases when we
are dealing with centro-symmetrical properties is
especially evident in sub-columns headed by 8 and
higher numbers in Table 2. Each of these Obergruppen
consists of a class with centre of inversion as one of the
symmetry operations, and of all its immediate sub-
groups.

4. Enantiomorphism and optical activity

For the properties dealt with above we have to find the
value of n, appropriate to the total symmetric irre-
ducible representation because we want to know the
number of combinations that remain invariant for all
operations R of the crystallographic group G. In
addition, there are other properties for which we have to
find the number of combinations that remain invariant
for operations of pure rotations, and change sign for
operations of rotation reflexions. Enantiomorphism
and optical activity are well-known examples of such
phenomena.

Enantiomorphism is the existence of forms which are
mirror images of each other. This is obviously repre-
sented by a single constant. Optical activity is repre-
sented by a second-order symmetric tensor which is
the gyration tensor with six components. The sign of
rotation of the plane of polarization remains invariant
under an operation of pure rotation and changes sign
for a rotation reflexion. In order, therefore, to find the
number of independent constants required to specify
the gyration tensor, we should find the number of inde-
pendent and orthogonal linear combinations of the
components which will transform so as to remain in-
variant if the symmetry operation is a pure rotation
and change sign if the symmetry operation is a rotation
reflexion. Hence the appropriate irreducible repre-
sentation for which the number of combinations has to
be found is not the total symmetric one but the anti-
symmetric irreducible representation with character
X:= * 1, the upper sign referring to pure rotations and
the lower referring to rotation reflexions. The character
x; of the transformation matrix for the gyration tensor
is again (4 cos?¢ + 2 cos¢), and for enantiomorphism it
is unity. Using the general formula (4) with the new
character, the numbers of constants for the 32 classes
are easily obtained. They are given in the sub-columns
headed by En. and Op. A. in Table 2. They all agree
with the known numbers.

This principle can be extended to the other characters
X; contained in Table 1. Voigt has considered the cases
of what he calls a pseudo-scalar, axial vector and axial
tensor, and physical properties represented by these
and the combination of these with the usual polar
vector and polar tensor. He has deduced the schemes
of non-vanishing constants for these properties irre-
spective of whether these properties have a real
existence or not. The numbers in all these cases agree
with those that would be obtained by combining the
value of + 1 for x,(R) with the xj(R) in the first six rows
of Table 1, namely, 1, (2cos¢ + 1), (4 cos?¢ + 2 cos¢),
(4cos?¢+4cosp+1) and (8cos® + 8cos?¢p+2cosg).
Numbers in these cases, except for enantiomorphism
and optical activity, are not given in Table 2 as they are
not all represented by known physical properties.
Voigt claims that the second and the last of the above
are represented by pyro-magnetism and piezo-miag-
netism respectively. An extension of this principle to
some of the more complicated tensors in Table 1 is easy,
but it is doubtful whether the results represent any
possible physical phenomena.
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Photo-elastic Behaviour of Ammonium Alum Ciystals

By S. BEAGAVANTAM AND D. SURYANARAYANA
Department of Physics, Andhra University, Waltair, India

(Received 29 June 1948 and in revised form 4 October 1943)

To test an earlier prediction by Bhagavantam, based on a group theoretical method, that the
T-23 and T,—2/m 3 classes of the cubic system need four independent constants, instead of three, for
describing their photo-elastic properties, crystals of ammonium alum belonging to the 7',—2/m 3 class
were studied completely. It was found that the crystal needs four independent constants and all the
four stress-optical constants of alum have been determined. For sodium D light, they are

(q11— 1) = — 5:93 x 10713,
¢ =55 x 10718,
The values of the strain-optical constants are
(P11 —P1a) = —0-0854,
P11 =038, .

1. Introduction

In the preceding paper in this journal (Bhagavantam
& Suryanarayana, 1949) a group theoretical methiod
is given of deriving the number of independent
constants needed to describe any physical property
in the 32 crystal classes. The numbers found in the
case of photo-elasticity are at variance with those
given by Pockels (1889, 1906, p. 460) and current in
the literature for the classes

Cy—4, 8,—1, Cy—4jm; C3—3, 8Sg—3, Cap—3/m,
Cy—8, Cgp—6/m; T'—23 and T, —2/m3.

The non-vanishing stress-optical coefficients, when
worked out directly for all the 32 classes, confirm the
findings of the group-theoretical method. They show
that in the case of photo-elasticity the 32 crystal classes

~are divided into eleven Obergruppen, and not nine as
was formerly believed to be the case.

The present experimental investigation of the photo-
elastic behaviour of certain crystals is undertaken to
clear the existing discrepancy. While, according to
Pockels, the cubic classes require only three constants,
the new theory predicts four independent photo-elastic
constants for the class 7', —2/m3. Of the cubic crystals
with which Pockels himself had worked, two, namely

(@u—qs)=
G12=11-6 X 10—,

(P11—p13) = —0:0756,
P12=046,

—5:25x 1078, g, =—1-15% 10-%,

g13=10-9x 1013 cm.2 dyne~1.

Pgg= — 0-0092,
P13=0-45.

potassium alum and ammonium alum, belong to this
class (Wyckoff, 1931). The original paper of Pockels
(1889) dealing with the alums shows that the orienta-
tions of his prisms were not suitable for deciding the
present issue. We therefore made further measurements
on alums, of which those on potassium alum have
already been published (Bhagavantam & Suryanara-
vana, 1947). Results on ammonium alum crystals now
obtained are reported here. They are in entire agree-
ment with the findings of the group-theoretical method. -

2. Theoretical considerations
The photo-elastic behaviour of the 7'-23 and T,-2/m3
classes of crystals is given by the equations
By, —B=—(911 Pou+ 012 Pyy+ 013 Piz)s Boz=—q4s P,
Byy— B=—(q13 Pue+ 911 Pyyt+ 012 Pua)s By= — Qa4 Pros
By — B= — (13 P+ 13 Pyy+ 011 Pra)s Bia= —qsaPuy-
(1)
In these equations B=1/n%, B} =1/n},, ete., where n is
the refractive index of the undeformed cubic crystal,
7., etc., are the components describing the Fresnel

ellipsoid in the deformed condition, Pg...P,, are the
components of stress, and ¢y, ¢y5, ¢33 and gy, are the

.



