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equatorial  plane at the central spot. In  this  case the 
method  is fur ther  l imited to class I crystals. For such 
pre l iminary  ad jus tments  either Laue or symmetr ica l  
oscillation photographs can be used. 

(c) Lonsdale (1947) has suggested the use of a flat 
film perpendicular  to the rotat ion axis for determining 
small  arc corrections from a Laue photograph when a 
symmet ry  axis is being adjus ted parallel to the rotat ion 
axis. The same method of calculation can be used, 
taking reflexions related by  a diad axis of symmet ry  
instead of by  a plane. The main  difficulties lie in deter- 

mining the point  where the rotat ion axis cuts the film, 
and the crystal-f i lm distance. A trial-and-error 
process m a y  have to be resorted to, using est imated 
instead of calculated adjus tments .  

References 
B~RSTO, A. (1948). J .  Sci. Instrum. 25, 215. 
HENDE~SrrO% O. P. (1937). Rev. Sei. Instrum. 8, 436. 
K_~AT~:Y, 0. & K_REBS, B. (1936). Z. Kryst~llogr. 95, '253. 
LONSDA_LE, K. (1047). J .  Sei. Instrura. 24, 108. 
WEISZ, O. & COLE, W. F. (1048). J .  Sei. Instrum. 25, 213. 

Acta Cryst. (1949). 2, 21 

Crystal Symmetry and Physical Properties: Application of Group Theory 

BY S. BI~AGAVANTAM AND D. SURTANARAYANA 

Department of Physics, Andhra University, Waltair, India 

(Received 29 June 1948 and in revised form 4 October 1948) 

The paper gives a brief account of group-theoretical methods of studying the effect of symmetry on 
all possible physical properties (known a a d  already measured or not known) which depend on 
crystal symmetry;  based on the fact that  all such properties represent the relation between two 
quantities each of which may  be a scalar, a vector, or a tensor. Tables are given showing the 
character of the transformation matrices for each possible combination of the above quantities, the 
number of independent constants needed to describe the corresponding phenomenon in each of the 
32 classes, and actual examples (where known) of physical properties corresponding to the different 
possible combinations. The 32 crystal classes are reduced to I 1 in all ca~es where centro-symmetrical 
properties are dealt with. When comparison is made with results of other methods of considering the 
same problems, discrepancies are found in the case of the photo-elastic coefficients and the third- 
order elastic coefficients. 

All the properties considered above are such as will remain invariant under a transformation of 
axes according to any symmetry operation. There are other properties, such as enantiomorphism 
and optical activity, which change sign for an operation of rotation reflexion. The numbers of 
independent constants in each of the 32 classes are deduced for these properties also. 

1. Introduction 

Physica l  properties of substances generally express the 
relat ion between two quanti t ies.  These m a y  be scalars, 
vectors, second- or higher-order tensors, all differing 
from one another  by  their  t ransformat ion  properties. 
Voigt made  the t ransformat ion  properties of the 
quant i t ies  involved in a physical  relat ion the basis for 
the classification of crystal  properties, thus  distinguish- 
ing scalar-scalar  relations (density), scalar-vector  re- 
lations (pyro-electricity), vector-vector  relations (di- 
electric polarization), tensor- tensor  relations (elas- 
ticity),  and  so on. Each  of these relations requires a 
number  of independent  coefficients connecting the 
components  of the quanti t ies  involved, and, without  
assuming any  s y m m e t r y  of the crystal,  the  number  of 
independent  coefficients in the case of l inear relations 
is the product  of the numbers  of independent  com- 
ponents  of the quantities~being related. In  crystals with 
symmet ry  elements, this  m a x i m u m  number  of coeffi- 
cients will be reduced. In  order to find the reduction,  
produced by  a symmet ry  element, Voigt t ransforms the 

axes of reference according to the s y m m e t r y  element  
and demands  tha t  this  t ransformat ion have no in- 
fluence on the values of the coefficients expressing the 
relation of the physical  quantit ies.  I t  follows by  this 
direct method of t ransformat ion tha t  a number  of 
coefficients mus t  bd zero, while others are equal. The 
systems of non-vanishing as well as of independent  
constants for various properties were thus  derived in 
considerable detail  by  Voigt (1910) and by Pockels 
(1906). Love (1928), Wooster (1938), Cady (1946), 
Mason (1947) and others have subsequent ly  dealt  with 
the subject. 

The fact tha t  the symmet ry  operations of a crystal  
form a group allows the applicat ion of group theory to 
the s tudy of the effect of symmet ry  on the physical  
properties of crystals. This very powerful method can 
be used as a valuable  check on the direct process of 
deriving the non-vanishing constants in each of the 
32 crystal classes. Thus J a h n  (1937) made use of group 
theory for deducing the number  of independent  para- 
meters and the non-vanishing elastic constants of 
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crystals. One of us (Bhagavantam, 1942) gave a some- 
what different method by which group theory can be 
used for deriving the numbers of independent constants 
in the 32 crystal classes for any property. This method 
was applied to the cases of optical, elastic and photo- 
elastic properties. Discrepancies were found in respect 
of photo-elasticity for certain crystal classes between 
the results thus obtained and those given earlier by 
Pockels. The method has since been extended to other 
physical properties in subsequent papers (Saksena, 
1944; Suryanarayana, 1945, 1946; Bhagavantam & 
Suryanarayana, 1947). I t  is now proposed to give a 
connected account and to apply it in a general manner 
to all the possible physical properties, already measured 
or otherwise, which depend on crystallographic 
symmetry. 

2. Description of the method 
Consider the transformation properties under any 
symmetry operation of a scalar, a vector, a second-order 
symmetric tensor and a second-order unsymmetric 
tensor. A scalar remains unctianged, the components 
of a vector transform as the Cartesian co-ordinates, the 
components of a symmetric tensor as the products of 
Cartesian co-ordinates with some additional condi- 
tions, the components of an unsymmetric tensor as 
simple products of Cartesian co-ordinates. Thus, under 
an operation Re consisting of a rotation about the 
z axis through ¢ or a rotation reflexion through ¢, the 
components of a vector, a symmetric tensor and an un- 
symmetric tensor transform according to the equations 
(1), (2) and (3) respectively. The upper and lower sign, 
where an alternative occurs, refer respectively to a 
pure rotation and a rotation reflexion. 

£0~-->-p~sin¢+p~cos¢, pz-+ -+Pz;J (1) 

a ~ - ~  ax~ cos ~ ¢ + a ~  sin s ¢ + 2 a ~  sin ¢ cos ¢, 

a ~ - ~  a ~  sin ~ ¢ + a ~  cos ~ ¢ - 2 ~  sin ¢ cos ¢, 

a~z.--> + a~  cos¢ V- a~x sine, (2) 

a~--> + a~  sin ¢ + a~  cos ¢, 

axe-> - ax~ sin ¢ cos ¢ + avv sin ¢ cos ¢ 
+ axe(cos s ¢ - sin s ¢) ; 

# ~  ~ # ~  cosec + # ~  sins ¢ + (#~ + #~)  sin ¢ cos¢, 

# ~  -~ # ~  sins ¢ + # ~  cosS ¢ - (&,  + #~)  sin ¢ cos ¢, 

l lz  -'->" 

fizz,---> 

x z  --)" 

x y  '--)" 

#= sin ¢ + #,z cos ¢, 

+ #~  cos ¢ + #~, sin ¢, 

+ #= cos ¢ + #~  sin ¢, 

--/?~ sine:cos ¢ +/?~ sine cos¢ 
-4- fl~ cos~ ¢ --,5'~x sin s ¢, 

- fl~ sin ¢ cos ¢ + # ~  sin ¢ cos ¢ 

-/?x~ sin~ ¢ +/?~x cos~ ¢. 

(3) 

These transformations may be regarded as linear sub- 
stitutions. The characters of the three tra~lsformation 
matrices are easily seen to be respectively 

(2cos¢_+1), (4cosS¢_+2cos¢) 

and (4 cos ~ ¢ _+ 4 cos ¢ + 1). 

Similarly, the transformation matrix and the respective 
character for a tensor of a higher order representing any 
given physical property can be deduced. I t  will be 
noted that  the character for an unsymmetric tensor 
having nine components is the square of the character 
for the vector of three components. Similarly, the 
character for a third-order tensor (piezo-electric con- 
stants giving the relation between a vector and a 
symmetric tensor) is the product of the characters 
appropriate to a vector and a symmetric tensor, and so 
on. When special relations exist between the various 
components, the character has, however, to be de- 
duced by writing down the full transformation matrix 
itself. For example, the elastic coefficients show how a 
stress tensor (second-order symmetric) gives rise to a 
strain tensor (second-order symmetric), but the maxi- 
mum number of such coefficients is only 21, and not 36, 
because of the special relations* ci~=cki, and the 
character in such a case has to be evaluated inde- 
pendently. Similar considerations apply to the higher- 
order elastic coefficients which reduce to 56 from being 
126. These characters are given in column 3 of Table 1. 

Considering, for example, the above symmetric 
tensor of six components, the linear substitutions (2) 
constitute a reducible representation of the group G of 
symmetry operations of any crystal class. Six mutually 
orthogonal and independent linear combinations of the 
above components may be found in such a way that  they 
fall into six or less number of sets, the members in each 
set transforming among themselves by every operation 
of the group G. Th~se will constitute the basis for a new 
and completely reducible representation of the group G. 
The character appropriate to any element R in this 
representation will be the same as that  obtained before, 
since the two are equivalent. I t  is now easy to find ni, 
the number of times a particular irreducible representa- 
tion repeats itself, in the representation consisting of 
the new variables with the help of the general formula 

1 
hi= _-=_ Zh~x~(R)xi (R) .  (4) 

. N j  

N is the total number of elements of the group G, and 
h~ is the number of elements in the j th  class. X'J (R) is 
the character of the appropriate transformation matrix 
relative to the operation R, as given in Table 1, and 
x~(R) is the character relative to the operation R in the 
particular irreducible representation Jr 

By the application of Voigt's condition, we demand 
that  in the case of any specified physical property 

* Voigt's notation is used: i mad k run from 1 to 6. 
t For a derivation of this formula and a fuller oxplaalation 

of the symbols, reference may be made to Bhagavmatam and 
Vonkatarayudu (1948). 
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represented by  such a tensor (row 3a of Table 1) only 
those combinations of parameters in respect of any 
particular crystal can survive which have the entire 
symmetry  of the crystal. Thus we want to know the 
number of combinations tha t  remain invariant for all 
operations R of the crystallographic group G. This 
means tha t  we need only find the value of n~ appro- 
priate to the total  symmetric irreducible representation. 
This is characterized by the fact tha t  xi(R) -- 1 for all R. 
In  this case ;~'j (R) has already been shown to be equal to 
(4 cos ~ ¢ + 2 cos ¢). 

Similar arguments hold for the various coefficients 
describing other phenomena. In  each case, the number 
n~ represents the number of independent constants 
needed to describe the phenomenon in the particular 
crystal class. 

3. Results 

Table 1 gives the physical properties arranged syste- 
matically in order of increasing complexity and is self- 
explanatory. Rows 1 to 10 refer to first-order pheno- 
mena, whereas rows 11, 12 and 13 are representative of 
higher-order phenomena. The list of physical properties 
in any row is only representative and is not claimed 
to be complete. Where no representative physical 
property is known to exist, a line is drawn. 

In  Table 2 are given the 32 crystal classes or point 
groups with their well-known symbols. Symbols repre- 
senting the symmetry  elements under each crystal 
class have the usual significance. The numbers of inde- 
pendent constants for each of the properties of Table 1 
needed by the 32 classes, as derived from formula (4), 
are given in Table 2. The elements of symmetry given in 
column 5 for each of the point groups are divided into 
conjugate classes of the group. I n  the sub-columns 

• headed by 8 and 12 are given the photo-elastic coeffi- 
cients and the third-order elastic coefficients, in which 
discrepancies were noticed and pointed out first by the 
application of this method. The division of the 32 
crystal classes into 11 Obergruppen in all cases when we 
are dealing with centre-symmetrical properties is 
especially evident in sub-columns headed by 8. and 
higher numbers in Table 2. Each of these Obergruppen 
consists of a class with centre of inversion as one of the 
symmetry  operations, and of all its immediate sub- 
groups. 

4. Enantiomorphism and optical activity 

For the properties dealt with above we have to find the 
value of n~ appropriate to the total  symmetric irre- 
ducible representation because we want to know the 
number of combinations tha t  remain invariant for all 
operations R of the crystallographic group G. In 
addition, there are other properties for which we have to 
find the number of combinations tha t  remain invariant 
for operations of pure rotations, and change sign for 
operations of rotation reflexions. Enantiomorphism 
and optical activity are well-known examples of such 
phenomena. 

Enantiomorphism is the existence of forms which are 
mirror images of each other. This is obviously repre- 
sented by a single constant. Optical act ivi ty is repre- 
sented by a second-order symmetric tensor which is 
the gyration tensor with six components. The sign of 
rotation of the plane of polarization remains invariant 
under an operation of pure rotation and changes sign 
for a rotation reflexion. In  order, therefore, to find the 
number of independent constants required to specify 
the gyration tensor, we should find the number of inde- 
pendent and orthogonal linear combinations of the 
components which will transform so as to remain in- 
variant  ff the symmetry  operation is a pure rotation 
and change sign if the symmetry  operation is a rotation 
reflexion. Hence the appropriate irreducible repre- 
sentation for which the number of combinations has to 
be found is not the total  symmetric one but  the anti- 
symmetric irreducible representation with character 
Xi = -+ 1, the upper sign referring to pure rotations and 
the lower referring to rotation reflexions. The character 
;~ of the transformation matrix for the gyration tensor 
is again (4 cosec _+ 2 cos¢), and for enantiomorphism it 
is unity. Using the general formula (4) with the new 
character, the numbers of constants for the 32 classes 
are easily obtained. They are given in the sub-columns 
headed by En. and Op. A. in Table 2. They all agree 
with the known numbers. 

This principle can be extended to the other characters 
X~ contained in Table 1. Voigt has considered the cases 
of what he calls a pseudo-scalar, axial vector and axial 
tensor, and physical properties represented by these 
and the combination of these with the usual polar 
vector and polar tensor. He has deduced the schemes 
of non-vanishing constants for these properties irre- 
spective of whether these properties have a real 
existence or not. The numbers in all these cases agree 
with those tha t  would be obtained by combining the 
value of _+ 1 for xi(R) with the x~(R) in the first six rows 
of Table 1, namely, 1, (2cos¢_+ 1), (4cos2¢_+2cos¢), 
(4 cosec +__ 4 cos¢ + 1) and (8 cos3¢ + 8 cosec + 2  cos¢). 
Numbers in these cases, except for enantiomorphism 
and optical activity, are not given in Table 2 as they  are 
not all represented by known physical properties. 
Voigt claims tha t  the second and the last of the above 
are represented by pyre-magnetism and piezo-mag- 
netism respectively. An extension of this principle to 
some of the more complicated tensors in Table 1 is easy, 
but  it is doubtful whether the results represent any 
possible physical phenomena. 
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To test an earlier prediction by Bhagavantam, based on a group theoretical method, that  the 
T-23 and Ta-2/m ~ classes of the cubic system need four independent constants, instead of three, for 
describing their photo-elastic properties, crystals of ammonium alum belonging to the Th-2/m -3 class 
were studied completely. It  was found that  the crystal needs four independent constants and all the 
four stress-optical constants of alum have been determined. For sodium D light, they are 

(qn-q12) = - 5.93 × 10 -la, (qn-qla)  = - 5.25 × 10 -la, q44 = - 1.15 × 10 -la, 

qn = 5.5 × 10-1a, ql~ = 11.6 × 10 -~a, qla = 10.9 × 10 -~a cm.9 dyne-~. 

The values of the strain-optical constants are 

(Pll-Pl~) = - 0.0854, (Pl l -Pla)  = - 0.0756, pa4= - 0.0092, 
p11- 0.38, • p ~ =  0.46, p~a= 0.45. 

1. Introduction 

In  the preceding paper in this  journal  (Bhagavan tam 
& Suryanarayana ,  1949) a group theoretical  method 
is given of deriving the number  of independent  
constants needed to describe any  physical  property 
in the 32 crystal  classes. The numbers  found in the 
case of photo-elast ici ty are at variance with those 
given by  Pockels (1889, 1906, p. 460) and current in 
the l i terature for the  classes 

C 4 - 4 ,  S a - 4 ,  C4~-4/m; C a - 3 ,  $ 6 - 3 ,  Cah-3/m,  

C 6 - 6  , C6~-6/m; T ' - 2 3  and T a - 2 / m 3 .  

The non:vanishing stress-optical coefficients, when 
worked out direct ly for all the  32 classes, confirm the 
findings of the group-theoretical  method. They  show 
tha t  in the  case of photo-elast ici ty the 32 crystal  classes 
are divided into eleven Obergruppen, and not  nine as 
was formerly believed to be the case. 

The present  exper imental  invest igat ion of the photo- 
elastic behaviour  of certain crystals is under taken  to 
clear the existing discrepancy. While,  according t o  
Pockels, the cubic classes require only three constants, 
the  new theory predicts four independent  photo-elastic 
constants for the class Ta ~-2/m-3. Of the cubic crystals 
with which Pockels h imself  had  worked, two, namely  

po tass ium a lum and ammon ium alum,  belong to this  
class (Wyckoff, 1931). The original paper  of Pockels 
(1889) dealing with the alums shows tha t  the orienta- 
tions of his prisms were not suitable for deciding the  
present issue. We therefore made further  measurements  
on alums,  of which those on potassium a lum have  
a l ready been publ ished (Bhagavantam & Suryanara-  
yana,  1947). Results  on ammon ium a lum crystals now 
obtained are reported here. They  are in entire agree- 
ment  with the findings of the group-theoretical method.  

2. Theoretical considerations 

The photo-elastic behaviour  of the  T-23 and  T~-2/m-3 
classes of crystals is given by  the  equations 

Bl l  - B = - (qll Px~ + q12 Pv~ + q18 P=), B2a = - q44 Pvz,] 

B22-  B- -  - (qla Pxx + qll Pvv + ql~ P=), B81 = - q44 p~,~w 

B3a -  B = - (q12 P ~  + q18 Pvv + qll P=), B19 = - q44p~v.jt 

(1) 

In  these equations B = 1/n ~, B~I = 1/n~l , etc., where n is 
the refractive index of the undeformed cubic crystal ,  
n l l  etc., are the components describing the Fresnel  
ellipsoid in the deformed condition, Px~...Pxv are the 
components of stress, and qll ,  ql~, qla and q44 are the  


